

Ph.D. ENTRANCE EXAMINATION, OCTOBER 2015

Section - B & C

Time: 140 Minutes Max. Marks: 160

Instructions:

(This is to test the candidate's ability of defining concepts through short answers.)

- 1) Answer any twelve questions from Section B and one question from Section C.
- 2) In Section B each question carries 10 marks. Section C carries 40 marks.
- In Section B an answer should not exceed 100 words. In Section C an answer should not exceed 500 words.
- 4) Candidates should clearly indicate the Section, Question Number and Question Booklet code in the answer paper.
- 5) The candidates are **permitted** to answer questions **only** from the subject that comes under the **faculty** in which he/she seeks registration as indicated in the **application** form.

FACULTY OF SCIENCE

- 1. Physics
- 2. Chemistry

Name of Candidate	<u></u>		
Register Number	**************************************		
Answer Booklet Code			
Signature of Candidate			78
Signature of Invigilator		7	

FACULTY OF SCIENCE

1. PHYSICS

Section - B

- Obtain the eigen values for J², J₂, J+ and J_and for the matrices. What are Pauli spin matrices?
- Define Hermitial operators. Show that the eigen values of a Hermitian operator are real.
- Obtain the relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic field.
- 4. a) Write the condition for a transformation to be Canonical.
 - b) Derive equations of motion in Poisson Bracket form.
- 5. Evaluate the canonical partition function for a system of N independent harmonic oscillators. Obtain the Helmholtz free energy of the system.
- Derive Lorentz transformation equations.
- Write about gravitation and acceleration and their relation with Non-inertial frames of reference.
- 8. Explain free electron theory of metals.
- 9. Discuss briefly quantum theory of para magnetism.
- What are gauge transformations? Obtain Maxwell's equation for scalar and vector potentials in Lorentz gauge.
- 11. Explain the input and output characteristics of a CE, CB and CC configurations of transistor amplifier. What are hybrid parameters?
- What are the features of an ideal Operational Amplifier? Draw the circuit of a differential amplifier with OPAMP and explain its working.
- 13. Discuss the quantum mechanical explanation for Raman Scattering. What is meant by Resonance Raman Scattering?
- 14. What is population inversion? Discuss different types of pumping in laser.
- 15. Explain Maxwell-Boltzmann Statistics.
- 16. Prove that Kronecker delta is a mixed tensor of rank 2 and that it is invariant.

- 10. Explain the general principles governing cycloaddition reactions.
- 11. What are Projection operators? Construct the hybrid orbitals of the BF₃ molecule? (Character table for the D_{3h} point group is given below)

D_{3h}	E	2C ₃	3C2	σ_{h}	2S ₃	$3\sigma_{v}$		
A ₁	1	1	1	1	1	1	. 8	$x^2 + y^2$, z^2
A ₂	1	1	-1	1	1	-1	R ₂	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1		(c)
$A_2^{"}$	1	1	-1	-1	-1	1	z	
E"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

- 12. What is meant by Jahn-Teller distortion? Explain its consequences with example.
- Discuss the synthesis of quinine with details on the mechanism of the reactions involved.
- 14. One mole of steam at 100 °C is converted to ice at 0 °C. Calculate the entropy change associated with the process. The latent heat of fusion of ice and the latent heat of vaporization of ice are 80 cal/g and 540 cal/g, respectively.
- 15. Calculate the change in pH caused by dissolving 1.025 g of anhydrous sodium acetate in 100 cm³ of 0.25 mole/dm³ acetic acid. (Molecular weight of anhydrous sodium acetate = 82; pK_a of acetic acid = 4.74)
- 16. Why are nanoparticles of metals behave differently from the bulk metals? Discuss the origin of the colour of metal nanoparticles.

Section - C

- 1. Discuss the crystal-field splitting in the octahedral, tetragonal, square planar, and the tetrahedral metal complexes with suitable examples.
- Explain the quantum mechanical model of vibrational spectroscopy. Discuss how IR and Raman spectroscopic techniques differ and how they complement each other to elucidate molecular structure.
- 3. Discuss the principles of green chemistry. How does olefine metathesis falls in the category of green chemistry?